Multiscale Autoregressive Models and Wavelets

نویسندگان

  • Khalid Daoudi
  • Austin B. Frakt
  • Alan S. Willsky
چکیده

The multiscale autoregressive (MAR) framework was introduced to support the development of optimal multiscale statistical signal processing. Its power resides in the fast and flexible algorithms to which it leads. While the MAR framework was originally motivated by wavelets, the link between these two worlds has been previously established only in the simple case of the Haar wavelet. The first contribution of this paper is to provide a unification of the MAR framework and all compactly supported wavelets as well as a new view of the multiscale stochastic realization problem. The second contribution of this paper is to develop wavelet-based approximate internal MAR models for stochastic processes. This will be done by incorporating a powerful synthesis algorithm for the detail coefficients which complements the usual wavelet reconstruction algorithm for the scaling coefficients. Taking advantage of the statistical machinery provided by the MAR framework, we will illustrate the application of our models to sample-path generation and estimation from noisy, irregular, and sparse measurements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale Autoregressive Models and Wavelets: Extended Version

The multiscale autoregressive (MAR) framework was introduced to support the development of optimal multiscale statistical signal processing. Its power resides in the fast and exible algorithms to which it leads. While the MAR framework was originally motivated by wavelets, the link between these two worlds has been previously established only in the simple case of the Haar wavelet. The rst cont...

متن کامل

Efficient multiscale stochastic realization

Few fast statistical signal processing algorithms exist for large problems involving non-stationary processes and irregular measurements. A recently introduced class of multiscale autoregressive models indexed by trees admits signal processing algorithms which can efficiently deal with problems of this type. In this paper we provide a novel and efficient algorithm for translating any secondorde...

متن کامل

Spatio-temporal filtering using wavelets

In this paper, a class of spatio-temporal processes with first-order autoregressive temporal structure and functional spatio-temporal interaction is introduced. The spatial second-order regularity is allowed to change over time and is characterized in terms of fractional Sobolev spaces. The associated filtering problem is considered, assuming that observations are defined by spatial linear func...

متن کامل

Computationally Eecient Stochastic Realization for Internal Multiscale Autoregressive Models *

In this paper we develop a stochastic realization theory for multiscale autoregressive (MAR) processes that leads to computationally eecient realization algorithms. The utility of MAR processes has been limited by the fact that the previously known general purpose realization algorithm, based on canonical correlations, leads to model inconsistencies and has complexity quartic in problem size. O...

متن کامل

The Modeling and Estimation of Statistically Self-Similar Processes in a Multiresolution Framework

Statistically self-similar (SSS) processes can be used to describe a variety of physical phenomena, yet modeling these phenomena has proved challenging. Most of the proposed models for SSS and approximately SSS processes have power spectra that behave as 1=f , such as fractional Brownian motion (fBm), fractionally differenced noise, and wavelet-based syntheses. The most flexible framework is pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 45  شماره 

صفحات  -

تاریخ انتشار 1999